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We present an extension of a simple automaton model to incorporate nonlocal 
interactions extending over a spatial range in lattice gases. From the viewpoint 
of statistical mechanics, the lattice gas with interaction range may serve as a 
prototype for non-ideal-gas behavior. From the density fluctuations correlation 
function, we obtain a quantity which is identified as a potential of mean force. 
Equilibrium and transport properties are computed theoretically and by 
numerical simulations to establish the validity of the model at macroscropic 
scale. 

KEY WORDS: Lattice gas automata; interaction potential; fluctuation 
correlation function; spinodal decomposition. 

1. LATTICE GAS WITH NONLOCAL INTERACTIONS 

Standard  latt ice gas a u t o m a t a  ( L G A )  evolve according to an i terated 
sequence of  mass- and momentum-prese rved  local collisions followed by 
propagat ion .  Nonloca l  interact ions can be incorpora ted  in the L G A  
dynamics  via long-distance m o m e n t u m  transfer s imulat ing a t t rac t ion  
and /o r  repulsion between particles.  ~-3) In local collisions, m o m e n t u m  
redis t r ibut ion is a node- located  process with local conservat ion of mass 
and momentum.  In nonlocal  interact ions (NLI) ,  m o m e n t u m  is exchanged 
between two part icles residing on nodes separa ted  by a (fixed or  var iable)  
distance r: mass  is conserved locally, m o m e n t u m  is conserved globally.  At 
the macroscopic  level, the main  feature exhibited by L G A  models  with 
NLIs  is a " l iquid-gas"- type phase separa t ion  with bubble  and d rop  forma- 
tion. ~1) F r o m  the statist ical  mechanical  viewpoint ,  L G A s  with NLIs  form 
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an interesting class of models in that - - in  contrast to standard collision- 
propagation models-- they include an elementary process which is essential 
for "nonideal" behavior. 

The dynamics of LGA virtual particles is not governed by Newton's 
equation of motion and the concepts of force and potential cannot be used 
in the sense of classical mechanics. Moreover, in real fluids each particle is 
subjected a priori  to the force field of all particles (whose effect is quantified 
by the potential of mean force), whereas in discrete lattice gases each 
particle interacts nonlocally with at most one other particle at a time. So 
stricto sensu the usual concept of intermolecular potential does not apply 
to lattice gases. 

In the LGA model with NLI 's  proposed by Tribel and Boon ~3~ the 
idea of an interaction range was introduced by governing the interaction 
distance according to a probability distribution--namely a power law 
(ocr-~)--wherefrom a distance r is drawn for each particle at every time 
step. Here we show that for sufficiently long times and large number of 
particles, the implementation of a probability distribution of interaction 
distance has a resulting effect similar to the effect of an interaction poten- 
tial. We first describe the model in Section 2. Then in Section 3 we compute 
the density fluctuation correlations 2 wherefrom a quantity is obtained 
which can be identified as a potential of mean force. Sections 4 and 5 
present an analysis of the equilibrium and transport properties. We 
conclude with some comments. 

2. I N T E R A C T I O N  R A N G E  M O D E L  

The automaton resides on a two-dimensional triangular lattice and 
uses for propagation and local collisions the rules of the FHP- I I I  model ~4) 
with periodic boundary conditions. Nonlocal interactions can take place 
between two particles when nodes separated by some distance r exhibit 
favorable configurations as illustrated in Fig. 1. The interaction modifies 
the orientation of the velocity vectors from a diverging configuration to a 
converging configuration to simulate attractive forces and vice versa for 
repulsive forces. At each time step, the algorithmic procedure must realize 
a pairing of particles separated by a distance r drawn from a probability 
distribution p(r) .  It is clear that a parallel algorithm can hardly be efficient 
here. Therefore we use a sequential algorithm which proceeds as follows: 

2 Here we are interested in correlations at distance of the order of the interaction range; long- 
range and long-time correlations are discussed, respectively in refs. 9 and I0. 
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Fig. I. Interaction configurations: configuration changes through nonlocal interactions 
between pairs of particles on nodes at distance r from each other. Dot ted  (full) arrows indicate 
channel occupation before (after) interaction: [Qj ,  Xk] "--' [Qk, Xj], X=R, S, T, where the 
channel indices (j ,  k) are given modulo  6 for i = 0,..., 5. M o m e n t u m  exchange th rough  inter- 
actions is two or  four units for (a) configurations, whereas all (b) interactions exchange two 
m o m e n t u m  units. 

(i) At each time step, a direction is arbitrarily chosen along any of 
the lattice axes and all interactions will be along that direction 
during that time step. 

(ii) A particle, say at node A, is (sequentially) selected and accepted 
if its state has not been modified by a previous interaction in the 
sequential procedure. 

(iii) A dista~nce r is drawn from the distribution p(r) and a pointer 
is set at nodes F and B, located, respectively, at a distance r 
forward and backward from A. 

(iv) If one of the configurations "BA" or "AF" is compatible for 
interaction (see Fig. 1 ), the configuration is modified accordingly 
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and the procedure keeps track of the modification for the 
duration of the sequence (each particle can undergo no more 
than one interaction per time step). 

As a result, the effective probability that an interaction occurs in the 
simulation differs from the theoretical p(r). The details of the computation 
are given in the appendix; here we merely quote the final result, which 
expresses the effective probability q(r) in terms of pF(r) and pB(r), 
denoting, respectively, the forward and backward probabilities with the 
imposed analytical form [e.g., p(r) oz r - t ] :  

with 

and 

q(r) = pv(r) + pn(r) -- pv(r) pB(r) (1) 

rmax 

pv(r)=p(r) 1-[ [1--X2PF(I)] (2) 
/ = r + l  

{ rmal~= x I t2 r-- 1 
pn(r)=p(r) [ 1 - - ~ 2 P F ( I ) ]  t__I~Ii [ 1 - - ~ 2 p a ( l ) ]  (31 

where rm~ is the cutoff distance in the distribution p(r), (3) and 
x2 = f ( 1  - f ) ,  with f the particle density per channel? Besides the fact that 
here interaction distances are distributed over an interaction range, an 
important difference from the fixed-distance model (L '-) is that in the present 
case, each particle belongs to many pairs of possible interactions. Note also 
that for similar reasons, there is a bias in the effective distribution toward 
large interaction distances. Indeed when drawing a low value of r from p(r) 
in the sequential procedure, there is a greater chance that the second 
particle of the pair is already involved in a previous pairing. As a result the 
effective probability for long-distance interactions is larger than predicted 
by the preset distribution p(r). 

The issue now arises of defining a quantity which can be identified as 
an interaction potential in a discrete lattice gas. We propose the following 
heuristic argument. We evaluate the rate of momentum exchange caused by 
the nonlocal interaction 

F(r) = yx,_-'q(r) (4) 

s Note that if desired operationally, Eqs. (1)-(3) can be inverted numerically to obtain a 
function p(r) such that the effective distribution q(r) is of given analytical form. 
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where y is a numerical factor whose  value corresponds to the average 
amount  of  m o m e n t u m  transfer (), = 4/3 and y = 1 for the models  shown in 
Figs. la  and lb,  respectively). Interpreting F(r) in (4) as a force, we define 
the "pair potential" as the discrete analog of  the potential in cont inuum 
mechanics: 

u ( r ) =  - - x ;  2 ~ F(/) 
/ = 1  

= - ~ ?q(l) 
/ 

= - r ~ ( r )  ( 5 )  

where ~ ( r )  is the repartition function corresponding to the distribution 
q(r). Then using Eqs. (1 ) - (3 ) ,  we see that u(r) is well  defined once p(r)  is 
fixed. For instance, if we use the power-law distribution p(r)  o c r  -~ such 
that the interactions are repulsive for r = 1 and attractive for r = 2 ..... rmax, 
then u(r) exhibits a form compatible  with the expected typical pair 
interaction potential,  as shown in Fig. 2. 

Fig. 2. 
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3. DENSITY FLUCTUATION CORRELATIONS 

The next issue is the influence of the nonlocal interactions on the den- 
sity fluctuation correlations in the lattice gas, which is most conveniently 
measured by the static structure factor <5) defined by 

1 r ~ n * ( k ,  t) ~nj(k, t) (6) ps(k)=-~,y.= ,.J 

where p is the density per node, and 

~ni(k, t) = ~ e-"k" X[n(x, c,; t) - - f ]  (7) 
X 

is the fluctuation of the channel occupation numbers ni (i = 0 ..... b). In the 
ideal lattice gas (whose dynamics is governed by propagation-collision 
rules) there are no static density correlations and the static structure factor 
is a constan(5): 

S~ = ( 1 - f ) ( 1  - 0(k)) (8) 

By analogy with the statistical mechanical theory of continuous fluids, ~6~ 
we write 

s(k) 
SO(k ) = 1 + fh (k )  (9) 

where h(k) is the Fourier transform of the pair correlation function 
[ g ( r ) -  1 ] and is therefore related to the potential of mean force ~(r) since 
g(r) =exp[  -fl~b(r)] (here fl is an arbitrary constant). So by measuring the 
density fluctuation correlations in lattice gas simulations, we can extract a 
function ~(r) from the measured static structure factor. The results are 
shown in Fig. 3: both the radial distribution function g(r) and the poten- 
tial function ~b(r) are reminiscent of those obtained in real fluid 
measurements, tT) The connection between the potential of mean force ~(r) 
and the interaction potential u(r) discussed in Section 2 remains to be 
clarified. 

Another interesting feature is worth mentioning. Consider the LGA 
is in the appropriate density range for spinodal decomposition (see 
Section 4). Then one could effectively "quench" the system by increasing 
the interaction range. By measuring S(k) at successively increasing values 
of r .... we find that S(k) increases dramatically at low k. Following the 
lines of heuristic reasoning and anticipating a result of Section 4, we infer 
that 

1 - f  
s ( ~  --, o )  _ ( l O )  

1 --yK3(r)q 
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where the denominator follows from the expression for the compressibility 
(see Section 4). Here (r)q is the expectation of r computed with the dis- 
tribution q(r). Since (r)q increases with r . . . .  S(k--* 0) grows accordingly 
as expected when the phase transition is approached. Further analysis will 
be presented in a forthcoming paper. 

4. E Q U I L I B R I U M  P R O P E R T I E S  

The pressure at global equilibrium is given by ~8) 

1 

where V is the number of nodes of the automaton universe, 
Y ~ x ~ ; ( n i ( x ) )  is the momentum transport due to propagation, and 
3 2 x ~ z Z ; ( m i ( x ) )  is the momentum flux due to NLIs. Then the 
hydrostatic pressure can be evaluated as follows: 

The convective momentum flux is the total momentum carried by 
moving particles in the fluid. On each node in the FHP- I I I  model, 
there are six channels with velocity 1 and one zero-velocity channel, 
so that 

6 ~ (n , (x)> = Vqp  (12) 
x ~ . - ~  i 

where p is the average density per node. 

The nonlocal momentum flux is caused by NLIs. The value of this 
flux is clearly given by 

~" ~ ( m , ( x ) )  = 3 VyK~ ~ rq(r) (I3) 
x ~ . ~  i r 

since on the average each NLI  causes a momentum flux of value ?r 
and on a given node three particles may independently be involved 
in an interaction. 

Consequently 

3 " (14) p = 3f--  ~ yK2(r)q 

with f = p / 7  and (r)q=~, , .  rq(r). The first term on the r.h.s, of (14) is the 
kinetic pressure of the ideal lattice gas and the second term as given in this 
mean-field evaluation depends only on the first moment of the distance 
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distribution q ( r ) .  Note that for fixed-distance interaction models, 
q ( r )  = & ( r - l )  and (14) becomes for the model of Fig. la (with 7=4 /3 )  

p =  3 f  - 21x  2 ( 1 5 )  

as given in refs. 1 and 2. 
From (14) it follows that the compressibility is given by 

1 0 p  

X p o p  

1 

3p(1 - 7 ( r ) q K 3 )  

Z ~ 

= l _ 7 ( r > q X  3 (16) 
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Fig. 5. Sound velocity versus density. Circles, squares, diamonds (resp. full, dotted, 
and dashed lines) correspond to fixed-distance interactions; triangles (long-dashed line) 
correspond to "f iat" distributed-distance interactions. Symbols are experimenta| data, curves 
are theoretical predictions. Fixed distances r and cutoff distances r,,ax are as indicated. Lattice 
size 512 x 5|2; each point is obtained by averaging over ten runs of  2500 time steps. 
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where x3 = f (  1 - f ) ( 1 -  2f) and 2:0 is the compressibility of the ideal gas. 
By using S(k-"*O)=pfl-I)(.th, (6) and the thermodynamic pressure of the 
ideal gas pth=--bfl  -~ ln(1--f) ,  which yields the compressibility Xt~ 
p - ~ f l ( l - f )  (with fl-~=Co=3/7 for the FHP-III model), we obtain 
Eq. (10). 

The compressibility equations (14) yields the square of the sound 
velocity c,, 

ap 2 
c~ = ~p = Co[ 1 - ~/r r> q] (17) 

Equation (17) is valid as long as ap/ap>O; when ap/ap<O, the 
density fluctuations show an explosive behavior and the system separates 
into two phases (i.e. for (r)q>7.79). In Fig. 4 we show the results of 
measurements of the pressure as given by Eq. (11), compared to the 
theoretical prediction (14); in Fig. 5, the theoretical sound velocity (17) is 
compared to the simulation results (for the experimental method, see e.g., 
ref. 2). Experimental evidence of spinodal decomposition is given in Fig. 6, 
where the evolution of the density distribution shows how phase separation 
takes place in the automaton. 
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Fig. 6. Evolution of the density distribution, measured every 100 time steps for a total 
duration of 700 time steps. The evolution shows horizontal separation of density peaks 
characteristic of spinodal decomposition, as opposed to vertical growth of peaks in nucleation 
and growth processes. Lattice size 512 x 512; # =0;  r~,ax = 20; density values are coarse 
grained by averaging over each node and its six nearest neighbors. 
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5. T R A N S P O R T  COEFFICIENTS 

5.1. Microdynamical  and Lattice Boltzmann Equations 

The evolution of the au tomaton  is obtained by applying successively 
the nonlocal interaction routine, the collision routine, and the propagat ion 
routine. This computat ional  procedure is the operational realization of the 
microscopic dynamics of the au tomaton  whose mathematical  formulation 
is given by the microdynamical  equation 

n(x + e`., e`.; t +  1 )=  ~.{ drl'n(x; t)]} (18) 

where n(x, e;; t) is the Boolean occupation variable of  channel i at node x 
at time t. Here cg and d r are the local collision and nonlocal interaction 
operators, respectively. The explicit expression of  the nonlocal  operator  dr 
reads 

+1 
J,.= �89 ~, q(r) ~, drr. i+j (19) 

r j = - - I  

with (for the model of Fig. la)  4 

J~.`.n(x; t ) =  [r~`.(x; t) n`.+3(x; t)][n`.(x+rc`.; t) r~,-+3(x + re;; t )]  

-- [n`.(x; t) 1ii+3(x; t)]  [,q`.(x -- re;; t) n`.+3(x--re,.; t )]  

j ` r  ;-+ ln(x; t) = [ti`.(X; t) n`._ z_ l(x; t )]  [n`.(x + re,.+ 1; t) 1~̀ .~_ l(x + re`._+ ,; t)]  

- -  [ r / i (X;  l) l~i. ~ i (X; I ) ]  [/~`.(X --re`.• l) hi-T-i( x --rei+l ; t )]  

(20) 
where if--- l - n. 

Taking the average of Eq. (18) over a nonequil ibrium ensemble, and 
making the molecular chaos assumption, one obtains the lattice Boltzmann 
equation 

f ( x  + e`., e,; t +  1 ) =  ~ .{d r [ f (x ;  t)]} (21) 

where f ( x ,  c`.; t) = (n(x ,  c`.; t ) )  is the singlet distribution function of 
channel i at node x at time t. In this equation, the operators ~ and J act 
on the distribution function f (not  on the Boolean variables n`.). 

4 Channel indices are numbered counterclockwise from 0 to 5 for moving particles and 6 for 
the rest particle, and indices i and i+j are taken modulo 6. 
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5.2. Linearized Latt ice Bo l tzmann Equat ion 

Considering small deviations from local equilibrium 

f (x ,  el; t ) = f +  6f (x ,  el; t) (22) 

we can linearize the lattice Boltzmann equation (21) for the perturbation 
Of Denoting by ~ the usual linearized collision operator and by A the 
linearized NLI operator, 

0 f (x ,  el; t) =(1  + A)U 0f(x, c; t) (23) 

we find for the linearized lattice Boltzmann equation 

O f ( x + e i ; e i ; t + l ) = ( l + f l ) # ( l + A ) j k O f ( x ,  ek; t  ) (24) 

We develop the perturbations 0 f  in Fourier modes 

0f(x, c/; t) = ~  ~ ~bu(k, c;) e ik'x +-','r (25) 
p k 

and rewrite Eq. (24) in Fourier space to obtain the eigenvalue equation for 
the automaton 

[e =,'~kl+ik'c - (1 + fl)(1 + A)],y [ ~bu(k, eft) = 0  (26) 

This equation is formally identical to the eigenvalue equation for the fixed- 
distance model, ~2) but the operator A is now a linear combination of the 
corresponding fixed-distance operators. The three slow (hydrodynamic) 
modes of interest are the shear mode, denoted ~b,,, whose eigenvalue 
corresponds to the kinematic viscosity v, and the two sound modes ~0~= _+ 
related to the sound velocity c~. and damping coefficient F. 

5.3. Transpor t  Coef f ic ients  

As mentioned, the operator A is a linear combination of fixed-distance 
NLI operators 

A~j = ~. q(r) A *r (27) 
r 

where A *r denotes the NLI operators at distance r. So the results for the 
fixed-distance interaction operators can be extended to the present model 
(see ref. 2 for details). The main difference is that the distance r is now 
replaced by its mean value ( r )q ,  and r 2 by the variance ( r  2) q--= ~~,. r2q(r). 
Expanding the eigenvalues in powers of k, 

z,,(k) = (~k) z~,'~+ (,k) 2 z~7'+ . . .  (28)  
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we o b t a i n  

Z( I )  _[_Cs ' 

z~> = v =  �89 + r 

with 

Z ( I )  - - 0  
v - -  

Z(v 2) = y 

375 

(29) 

v =  Vo(1 - -  � 8 9  - (r)qXa) + ~(r)qX3(1 -- � 8 9  + ~(r2)qX2 

( = (0(1 - -  4(r>qK3) -- l<r>qK3 -]- l(r2>qK2 (30)  

v o and (o are the kinematic and bulk viscosities of the standard FHP- I I I  
model, 

1 1 1 

1) (1) 

with 

co, = x2(7 - 8x2) 

(or = 7K2( 1 -- 2K2) 
(32)  

Excellent agreement is obtained between the simulation data and the 
theoretical results, as shown in Fig. 7. 

6. C O M M E N T S  

The question was raised by Gerits eta/. (2) that models with nonlocal 
fixed interaction distance lack detailed balance and that therefore their 
equilibrium distribution is not known. In fact, with a proper redefinition of 
the configuration space, it can be shown that a generalized semi-detailed 
balance holds for LGAs with NLIs and that an H-theorem exists. The 
mean-field theory is found to correctly predict macroscopic equilibrium 
and transport properties. Fluctuation correlations were measured and the 
static structure factor was used to extract the LGA analog of a potential 
of mean force. The statistical mechanical theory will be discussed in a 
forthcoming paper. 
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APPENDIX.  EVALUATION OF q(r) 
Here we show how to compute the effective automaton distance 

distribution q(r) from a given probability distribution p(r). The algorithmic 
procedure considers each node sequentially. Define the node currently 
examined as the "center node" A and define the "forward node" F and 
"backward node" g located along the direction of interaction at a distance 
r on each side of A. Now each particle on A may interact with at most one 
particle located either on F or on B. However, since the algorithm is 
sequential, the forward and backward probabilities are different: a back- 
ward interaction is possible only if the particle on A has not interacted 
before, while a forward interaction is independent of previous interactions 
involving node A. 

�9 Forward interaction probability pv(r). Suppose that configurations 
on A and F are favorable (see Fig. 1). Then the only additional condition 
is that the particle on F cannot have been involved previously in an inter- 
action from a distance larger than r. This "nonevent" has the probability 

rmax 

H [ 1 -K2pF(I)] (A1) 
/ = r + l  

Consequently, the equation for PF is given by 

rrnax 

p v ( r ) - - p ( r )  ]-I [1- -~2pF( l ) ]  (A2) 
I = r +  1 

�9 Backward interaction probability pB(r). We must consider that (i) 
the particle on A has not been involved in a previous (forward) interaction, 
(ii) the particle on B has not been paired successfully with another particle 
when B was a center node (forward interaction), and (iii) the particle on 
B has not been paired successfully with a center node located between B 
and A (backward interaction). The corresponding probabilities are as 
follows. 

(i) No interaction with A as a foward node: 

rmax 

l-I [1--K2pF(I)]  (A3) 
/ = l  

(ii) No interaction with B as a center node: same as (A3). 

(iii) No interaction with B as backward node: 

r - - l  

I-[ [1 - Ic2pa( l )  ] (A4) 
/ = 1  



Lattice Gas with "Interaction Potential" 377 

The b a c k w a r d  p robab i l i t y  is therefore 

rmax }2 
pB(r)=p(r) {I~=I [1--K2pF(I)] 

r - - I  

H [ 1 - x 2 p B ( / ) ]  (A5) 
l = l  

As a result ,  q(r) is expressed as a c o m b i n a t i o n  of PB and  P v ,  given that  
forward and  b a c k w a r d  in te rac t ions  are m u t u a l l y  exclusive: 

q(r) = pv ( r )  + pB(r ) [  1 --  p v ( r )  ] (A6) 

In  the case of  f ixed-distance in te rac t ions  (at  a d is tance  /o), the above  
cons ide ra t ions  do no t  app ly  a n d  the d i s t r ibu t ion  reduces  to 

q(r) = 0 r ,  to (A7) 
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